Designing macromolecules for therapeutic applications: polyester dendrimer-poly(ethylene oxide) "bow-tie" hybrids with tunable molecular weight and architecture.

نویسندگان

  • Elizabeth R Gillies
  • Jean M J Fréchet
چکیده

The design and preparation of new polyester dendrimer, poly(ethylene oxide) hybrid systems for drug delivery and related therapeutic applications, are described. These systems consist of two covalently attached polyester dendrons, where one dendron provides multiple functional handles for the attachment of therapeutically active moieties, while the other is used for attachment of solubilizing poly(ethylene oxide) chains. By varying the generation of the dendrons and the mass of the poly(ethylene oxide) chains, the molecular weight, architecture, and drug loading can be readily controlled. The "bow-tie" shaped dendritic scaffold was synthesized using both convergent and divergent methods, with orthogonal protecting groups on the periphery of the two dendrons. Poly(ethylene oxide) was then attached to the periphery of one dendron using an efficient coupling procedure. A small library of eight carriers with molecular weights ranging from about 20 kDa to 160 kDa were prepared and characterized by various techniques, confirming their well-defined structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation.

High molecular weight polymers (> 20 000 Da) have been widely used as soluble drug carriers to improve drug targeting and therapeutic efficacy. Dendritic polymers are exceptional candidates for the preparation of near monodisperse drug carriers due to their well-defined structure, multivalency, and flexibility for tailored functionalization. We evaluated various dendritic architectures composed...

متن کامل

Nanohybrids from liquid crystalline extended amphiphilic dendrimers.

A novel extended amphiphilic dendrimer with linear poly(ethylene oxide) (PEO) attached to a PEO-like dendritic core as hydrophilic fraction and eight docosyl chain branches as hydrophobic fraction has been prepared for the use as structure-directing agent for silica-type materials. The extended dendrimer exhibits a hexagonal columnar liquid crystalline phase in the melt. Organically modified in...

متن کامل

Rsc_cc_c0cc02833a 1..3

Since Iijima’s report on carbon nanotubes (CNTs), they have been widely investigated due to their unique properties. In spite of many advantages, the practical applications of CNTs have been limited by their poor dispersibility in solvents, polymers, ceramics and metallic matrices. To overcome this limitation, many chemical and physical approaches to functionalized CNTs have been developed duri...

متن کامل

Synthesis and characterization of tri(ethylene oxide)-attached poly(amidoamine) dendrimer layers on gold.

This paper describes the synthesis of a tri(ethylene oxide)-attached fourth-generation poly(amidoamine) dendrimer (EO3-dendrimer) and the characterization of its layers on gold. NMR analysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry revealed that about 61 amine groups of a G4 PAMAM dendrimer were covalently conjugated with tri(ethylene oxide) units, accoun...

متن کامل

Micelle-templated, poly(lactic-co-glycolic acid) nanoparticles for hydrophobic drug delivery

Purpose Poly(lactic-co-glycolic acid) (PLGA) is widely used for drug delivery because of its biocompatibility, ability to solubilize a wide variety of drugs, and tunable degradation. However, achieving sub-100 nm nanoparticles (NPs), as might be desired for delivery via the enhanced permeability and retention effect, is extremely difficult via typical top-down emulsion approaches. Methods Her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 124 47  شماره 

صفحات  -

تاریخ انتشار 2002